B.Sc. 4th Semester (Honours) Examination, 2020-21 PHYSICS

Course ID: 42411 Course Code: SH/PHS/401/C-8/T-8

Course Title: Mathematical Physics-III

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right hand side margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Section - I

1. Answer any *five* questions:

1x5=5

(a) State which mapping from $A = \{a, b, c\}$ to $B = \{x, y, z\}$ defines a function and why?

- (b) Find the norm and normalized vector form of (1, i).
- (c) Define 'Binary operation' in abstract algebra.
- (d) Find Laplace transform of $(1 + \cos 2t)$
- (e) State Cayley Hamiltonian theorem.
- (f) State convolution theorem in connection with the Laplace transformation.
- (g) Find the Fourier transform of $f(x) = \begin{bmatrix} 1 & for |x| < 1 \\ 0 & for |x| > 1 \end{bmatrix}$
- (h) A 3x3 matrix satisfies the equation $M^2 3M + 2I = 0$ (*I* is the identity matrix). Find out the determinant of the matrix if its trace is 6.

Section - II

2. Answer any *two* questions:

5x2 = 10

- (a) Obtain a set of four orthonormal vectors by the Schmidt's method from the vectors $\mathbf{U1}=(1, 1, 0, 1)$, $\mathbf{U2}=(2, 0, 0, 1)$, $\mathbf{U3}=(0, 2, 3, -2)$, $\mathbf{U4}=(1, 1, 1, -5)$.
- (b) Find the inverse Laplace transform of $\frac{2s-5}{9s^2-25}$.
- (c) Using matrix method solve the differential equation

$$\dot{x} = 6x + 5y$$
 and $\dot{y} = x + 2y$

P.T.O.

(d) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| & for |x| < 1 \\ 0 & for |x| > 1 \end{cases}$

Section - III

3. Answer any *one* question:

10x1=10

- (a) (i) If Laplace transform of F(t), i.e., L{F(t)} = f(s) then show that $L\left\{\int_0^t F(u)du\right\} = \frac{f(s)}{s}$. (ii) A semi-infinite transmission line of negligible inductance and leakage per unit length has its voltage and current equal to zero. A constant voltage is applied at its sending end (x=0) at time t=0. Using Laplace transform find the voltage and current that flowing in the transmission line at any point (x>0) and at any instant t. You may use the equations of transmission line $\frac{\partial v}{\partial x} = -Ri$; $\frac{\partial i}{\partial x} = -C\frac{\partial v}{\partial t}$ [symbols have their usual meanings]
- (b) Using Fourier integral representation, show that $\int_0^\infty \frac{\lambda sin\lambda x}{(\lambda^2 + \alpha^2)(\lambda^2 + \beta^2)} d\lambda = \frac{\pi}{2} \frac{(e^{-\alpha x} e^{-\beta x})}{(\beta^2 \alpha^2)}$. Hence, find the Fourier sine integral representation of $(e^{-x} e^{-2x})$. Find the complex Fourier transform of the Dirac delta function $\delta(t-a)$.

2